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Abstract
In this article, several cohomology spaces associated to the arithmetic groups SL3(Z)

and GL3(Z) with coefficients in any highest weight representation Mλ have been
computed, where λ denotes their highest weight. Consequently, we obtain detailed
information of their Eisenstein cohomology with coefficients in Mλ. When Mλ is
not self dual, the Eisenstein cohomology coincides with the cohomology of the under-
lying arithmetic group with coefficients in Mλ. In particular, for such a large class
of representations we can explicitly describe the cohomology of these two arithmetic
groups.We accomplish this by studying the cohomology of the boundary of the Borel–
Serre compactification and their Euler characteristic with coefficients in Mλ. At the
end, we employ our study to discuss the existence of ghost classes.
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1 Introduction

Let G be a split semisimple group defined over Q, then for every arithmetic subgroup
� ⊂ G(Q) one can define the corresponding locally symmetric space

S� = �\G(R)/K∞

where K∞ denotes the maximal connected compact subgroup of G(R). In this context
we can consider the Borel–Serre compactification S� of S� (see [4]), whose boundary
∂S� is a union of spaces indexed by the�-conjugacy classes ofQ-parabolic subgroups
of G. For the detailed account on Borel–Serre compactification, see [15]. The choice
of a maximal Q-split torus T of G and a system of positive roots �+ in �(G,T)

determines a set of representatives for the conjugacy classes ofQ-parabolic subgroups,
namely the standard Q-parabolic subgroups. We will denote this set by PQ(G). One
can write the boundary ∂S� as a union

∂S� =
⋃

P∈PQ(G)

∂P,�. (1)

The irreducible representation Mλ of G associated to a highest weight λ defines a
sheaf over S� , denoted by M̃λ, that is defined over Q. This sheaf can be extended in
a natural way to a sheaf in the Borel–Serre compactification S� and we can therefore
consider the restriction to the boundary of the Borel–Serre compactification and to
each face of the boundary, obtaining sheaves in ∂S� and ∂P,� . The aforementioned
covering defines a spectral sequence abutting to the cohomology of the boundary

E p,q
1 =

⊕

prk(P)=p+1

Hq(∂P,�,M̃λ) �⇒ H p+q(∂S�,M̃λ). (2)

where prk(P)denotes the parabolic rank of P (the dimension of itsQ-split component).
In this article we present an explicit description of this spectral sequence to discuss in
detail the boundary and Eisenstein cohomology for the particular rank two cases SL3
and GL3.
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Boundary and Eisenstein cohomology of SL3(Z) 201

Since its development, cohomology of arithmetic groups has been proved to be a
valuable tool in analyzing the relations between the theory of automorphic forms and
the arithmetic properties of the associated locally symmetric spaces. A very common
goal is to describe the cohomology H•(S�,M̃λ) in terms of automorphic forms. The
study of boundary and Eisenstein cohomology of arithmetic groups has many number
theoretic applications. As an example, one can see applications on the algebraicity of
certain quotients of special values of L-functions in [11].

The main tools and idea to study the boundary cohomology of arithmetic groups
have been developed by the second author in a series of articles [11,12,14]. This
article is no exception in taking the hunt a little further. Especially, we make use of
the techniques developed in [14]. In a way, this article is a continuation of the work
carried out by the second author in [12]. In Sect. 7, the cohomology of the boundary
of SL3(Z) has been described after introducing the necessary notations and tools in
Sects. 2 and 3.

In order to achieve the details about the space of Eisenstein cohomology of the two
mentioned arithmetic groups, we make use of their Euler characteristics. In Sect. 5,
we discuss this in detail. The importance of Euler charcateristic to study the space of
Eisenstein cohomology has been discussed by the third author in [19]. For more details
about Euler characteristic of arithmetic groups see [17,18]. In Sect. 6, we compute the
space of Eisenstein cohomology of the arithmetic groups SL3(Z) and GL3(Z) with
coefficients in Mλ. One of the most interesting take aways, among others, of these
two sections is the intricate relation between the spaces of automorphic forms of SL2
and the boundary and Eisenstein cohomology spaces of SL3.

In Sect. 7, we carry out the discussion of existence of ghost classes in SL3(Z)

and GL3(Z) in detail with respect to any highest weight representation. Ghost classes
were introduced by A. Borel [3] in 1984. For details and exact definition of these
classes see Sect. 7. Later on, these classes have appeared in the work of the second
author. For example at the end of the article [12] with emphasis to the case GL3, it
is mentioned that “.... the ghost classes appear if some L-values vanish. The order
of vanishing does not play a role. But this may change in higher rank case”. The
author further added that this aspect is worthy of investigation. The importance of
their investigation has been occasionally pointed out. Since then, these classes have
been studied at times, however the general theory of these classes has been slow in
coming. We couldn’t trace down the complete analysis of ghost classes in these two
specific cases in complete generality, i.e. for arbitrary coefficient system. However,
in case of SL4(Z) these classes have been discussed by Rohlfs in [25]. In general for
SLn , Franke developed a method to construct ghost classes in [7]. Later on, using
the method developed in [7], Kewenig and Rieband have found ghost classes for the
orthogonal and symplectic groupswhen the coefficient system is trivial, see [20].More
recently, these classes have been discussed by the first and last author in the case of
rank two orthogonal Shimura varieties in [1] and by the last author in case of GSp4 in
[23] and GU(2, 2) in [24].

The main results of this article are the following,

• Theorem 11, where the Euler characteristic of SL3(Z) is calculated with respect
to every finite dimensional highest weight representation.
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202 J. Bajpai

• Theorem 12, where the boundary cohomology with coefficients in every finite
dimensional highest weight representation is described.

• Theorem 15, that shows that the Euler characteristic of the boundary cohomology
is half the Euler characteristic of the Eisenstein cohomology.

• Theorem 16, where we describe the Eisenstein cohomology for every finite dimen-
sional highest weight representation.

• Theorem 26, that shows that there are no ghost classes unless possibly in degree
two for certain nonregular highest weights.

In this paper we do not refer to and do not use transcendental methods, i.e. we
do not write down convergent (or even non convergent) infinite series and do not
use the principle of analytic continuation. This allows us to work with coefficient
systems which are Q-vector spaces. Only at one place we refer to the Eichler-Shimura
isomorphism, but this reference is not really relevant. At one point we refer to a deep
theorem of Bass-Milnor-Serre [2] to get the complete description of the Eisenstein
cohomology. Transcendental arguments would allow us to avoid this reference, see
[13] and [26].

In Theorem 26 we leave open, whether in a certain case ghost classes might exist.
In a letter to A. Goncharov the second author has outlined an argument that shows
that there are no ghost classes, but this argument depends on transcendental methods.
This will be discussed in a forthcoming paper.

2 Basic notions

This section provides quick review to the basic properties of SL3 (and GL3) and famil-
iarize the reader with the notations to be used throughout the article. We discuss the
corresponding locally symmetric space, Weyl group, the associated spectral sequence
and Kostant representatives of the standard parabolic subgroups.

2.1 Structure theory

Let T be the maximal torus of SL3 given by the group of diagonal matrices and
� be the corresponding root system of type A2. Let ε1, ε2, ε3 ∈ X∗(T) be the
usual coordinate functions on T. We will use the additive notation for the abelian
group X∗(T) of characters of T. The root system is given by � = �+ ∪ �−,
where �+ and �− denote the set of positive and negative roots of SL3 respec-
tively, and �+ = {ε1 − ε3, ε1 − ε2, ε2 − ε3}. Then the system of simple roots is
defined by � = {α1 = ε1 − ε2, α2 = ε2 − ε3}. The fundamental weights associ-
ated to this root system are given by γ1 = ε1 and γ2 = ε1 + ε2. The irreducible
finite dimensional representations of SL3 are determined by their highest weight
which in this case are the elements of the form λ = m1γ1 + m2γ2 with m1, m2
non-negative integers. The Weyl group W of � is given by the symmetric group
S3.

The above defined root system determines a set of proper standard Q-parabolic
subgroups PQ(SL3) = {P0,P1,P2}, where P0 is a minimal and P1,P2 are maximal
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Boundary and Eisenstein cohomology of SL3(Z) 203

Q-parabolic subgroups of SL3. To be more precise, we write

P1(A) =
⎧
⎨

⎩

⎛

⎝
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞

⎠ ∈ SL3(A)

⎫
⎬

⎭ , P2(A) =
⎧
⎨

⎩

⎛

⎝
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

⎞

⎠ ∈ SL3(A)

⎫
⎬

⎭ ,

for every Q-algebra A, and P0 is simply the group given by P1 ∩ P2.
The set PQ(SL3) is a set of representatives for the conjugacy classes of Q-

parabolic subgroups of SL3. Consider the maximal connected compact subgroup
K∞ = SO(3) ⊂ SL3(R) and the arithmetic subgroup � = SL3(Z), then S� denotes
the orbifold �\SL3(R)/K∞. Note that in terms of differential geometry S� is not a
locally symmetric space, this is because of the torsion elements in �.

2.2 Spectral sequence

Let S� denote the Borel–Serre compactification of S� (see [4]). Following (1), the
boundary of this compactification ∂S� = S�\S� is given by the union of faces indexed
by the �-conjugacy classes of Q-parabolic subgroups. Consider the irreducible rep-
resentation Mλ of SL3 associated with a highest weight λ. This representation is
defined over Q and determines a sheaf M̃λ over S� . By applying the direct image
functor associated to the inclusion i : S� ↪→ S� , we obtain a sheaf on S� and,
since this inclusion is a homotopy equivalence (see [4]), it induces an isomorphism
H•(S�,M̃λ) ∼= H•(S�, i∗(M̃λ)). From now on i∗(M̃λ) will be simply denoted by
M̃λ. In this paper, one of our immediate goals is to make a thorough study of the
cohomology space of the boundary H•(∂S�,M̃λ).

The covering (1) defines a spectral sequence in cohomology abutting to the coho-
mology of the boundary. To be more precise, one has the spectral sequence defined
by (2) in the previous section. To be able to study this spectral sequence, we need to
understand the cohomology spaces Hq(∂P,�,M̃λ) and this can be done by making
use of a certain decomposition. To present the aforementioned decomposition we need
to introduce some notations.

Let P ∈ PQ(SL3) be a standard Q-parabolic subgroup and M be the corresponding
Levi quotient, then �M and KM∞ will denote the image under the canonical projection
π : P −→ M of the groups � ∩ P(Q) and K∞ ∩ P(R), respectively. ◦M will denote
the group

◦M =
⋂

χ∈X∗
Q

(M)

χ2

where X∗
Q
(M) denotes the set of Q-characters of M. Then �M and KM∞ are contained

in ◦M(R) and we define the locally symmetric space of the Levi quotient M by

SM� = �M\◦M(R)/KM∞.
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204 J. Bajpai

Fig. 1 Weyl elements : blue and
red arrows denote the simple
reflections s1 and s2
respectively. si acts from the left
on the element that appears on
the tale and the result of this
action appears at the head of the
respective arrow

e

(2 3)(1 2)

(1 2 3)(1 3 2)

(1 3)

Table 1 The set of Weyl
representatives WP0 w σ �(w) σ−1(α1) σ−1(α2)

e e 0 α1 α2

s1 (1 2) 1 −α1 α1 + α2

s2 (2 3) 1 α1 + α2 −α2

s2s1 (1 3 2) 2 α2 −α1 − α2

s1s2 (1 2 3) 2 −α1 − α2 α1

s2s1s2 (= s1s2s1) (1 3) 3 −α2 −α1

On the other hand, let

WP = {w ∈ W|w(�−) ∩ �+ ⊆ �+(n)}

be the set of Weyl representatives of the parabolic P (see [21]), where n is the Lie
algebra of the unipotent radical of P and �+(n) denotes the set of roots whose root
space is contained in n. If ρ ∈ X∗(T) denotes half of the sum of the positive roots (in
this case this is just ε1 − ε3) and w ∈ WP, then the element w · λ = w(λ + ρ) − ρ

is a highest weight of an irreducible representation Mw·λ of ◦M and defines a sheaf
M̃w·λ over SM� . Then we have a decomposition (Fig. 1)

Hq(∂P,�,M̃λ) =
⊕

w∈WP

Hq−�(w)(SM� ,M̃w·λ).

2.3 Kostant representatives of standard parabolics

In the next table we list all the elements of the Weyl group along with their lengths
and the preimages of the simple roots. The preimages will be useful to determine the
sets of Weyl representatives for each parabolic subgroup (Table 1).

Note that in the case of SL3, ε3 = −(ε1 + ε2) and WP0 = W . Now, by using this
table, one can see that the sets of Weyl representatives for the maximal parabolics P1
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Boundary and Eisenstein cohomology of SL3(Z) 205

and P2, are given by

WP1 = {e, s1, s1s2} and WP2 = {e, s2, s2s1} .

We now record for each standard parabolic P and Weyl representative w ∈ WP, the
expression w · λ in the convenient setting so that it can be used to obtain Lemmas 1
and 3 which commence in the next few pages. Let λ be given by m1γ1 + m2γ2, then
the Kostant representatives for parabolics P0,P1 and P2 are listed respectively, where
we make use of the notations

γM1 = 1

2
(ε2 − ε3), κM1 = 1

2
(ε2 + ε3),

γM2 = 1

2
(ε1 − ε2), κM2 = 1

2
(ε1 + ε2).

2.3.1 Kostant representatives for minimal parabolic P0

e · λ = m1γ1 + m2γ2

s1 · λ = (−m1 − 2)γ1 + (m1 + m2 + 1)γ2
s2 · λ = (m1 + m2 + 1)γ1 + (−m2 − 2)γ2

s1s2 · λ = (−m1 − m2 − 3)γ1 + m1γ2

s2s1 · λ = m2γ1 + (−m1 − m2 − 3)γ2
s2s1s2 · λ = s1s2s1 · λ = (−m2 − 2)γ1 + (−m1 − 2)γ2

2.3.2 Kostant representatives for maximal parabolic P1

e · λ = m2γ
M1 + (−2m1 − m2)κ

M1

s1 · λ = (m1 + m2 + 1)γM1 + (m1 − m2 + 3)κM1

s1s2 · λ = m1γ
M1 + (m1 + 2m2 + 6)κM1

2.3.3 Kostant representatives for maximal parabolic P2

e · λ = m1γ
M2 + (m1 + 2m2)κ

M2

s2 · λ = (m1 + m2 + 1)γM2 + (m1 − m2 − 3)κM2

s2s1 · λ = m2γ
M2 + (−2m1 − m2 − 6)κM2

3 Parity conditions in cohomology

The cohomology of the boundary can be obtained by using a spectral sequence whose
terms are given by the cohomology of the faces associated to each standard parabolic
subgroup. In this section we expose, for each standard parabolic P and irreducible
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206 J. Bajpai

representation Mν of the Levi subgroup M ⊂ P with highest weight ν, a parity
condition to be satisfied in order to have nontrivial cohomology H•(SM� ,M̃ν). Here
SM� denotes the symmetric space associated toMandM̃ν is the sheaf in SM� determined
byMν .

3.1 Borel subgroup

We begin by studying the parity condition imposed on the face associated to the
minimal parabolic P0 of SL3. The Levi subgroup of P0 is the two dimensional torus
M0 = Tof diagonalmatrices. To get nontrivial cohomology the finite group�M0∩KM0∞
has to act trivially onMν , because otherwise M̃ν = 0. Therefore, the following three
elements

⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ ,

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ ∈ �M0 ∩ KM0∞

must act trivially on Mν so that the sheaf M̃ν is nonzero. By using this fact one can
deduce the following

Lemma 1 Let ν be given by m′
1γ1 + m′

2γ2. If m′
1 or m′

2 is odd then the corresponding

local system M̃ν in SM0
� is 0.

Note that the ν to be considered in this paper will be of the formw ·λ, forw ∈ WP0 .

We denote by W0
(λ) the set of Weyl elements w such that w · λ do not satisfy the

condition of Lemma 1.

Remark 2 For notational convenience, we simply use ∂i to denote the boundary face
∂Pi ,� associated to the parabolic subgroup Pi and the arithmetic group � for i ∈
{0, 1, 2}. In addition, we will drop the use of � from the S� and ∂S� and likewise
from the other notations.

3.1.1 Cohomology of the face @0

In this case Hq(SM0 ,M̃w·λ) = 0 for every q ≥ 1. The set of Weyl representatives
WP0 = W and the lengths of its elements are between 0 and 3 as shown in the table
and figure above. We know

Hq(∂0,M̃λ) =
⊕

w∈WP0

Hq−�(w)(SM0 ,M̃w·λ)

=
⊕

w∈WP0 :�(w)=q

H0(SM0 ,M̃w·λ)

Therefore

H0(∂0,M̃λ) = H0(SM0 ,M̃λ)

123



Boundary and Eisenstein cohomology of SL3(Z) 207

H1(∂0,M̃λ) = H0(SM0 ,M̃s1·λ) ⊕ H0(SM0 ,M̃s2·λ)
H2(∂0,M̃λ) = H0(SM0 ,M̃s1s2·λ) ⊕ H0(SM0 ,M̃s2s1·λ)
H3(∂0,M̃λ) = H0(SM0 ,M̃s1s2s1·λ)

and for every q ≥ 4, the cohomology groups Hq(∂0,M̃λ) = 0.

3.2 Maximal parabolic subgroups

In this section we study the parity conditions for the maximal parabolics. Let i ∈
{1, 2}, then Mi ∼= GL2 and in this setting, KMi∞ = O(2) is the orthogonal group and
�Mi = GL2(Z). Therefore

SMi ∼= S̃GL2 = GL2(Z)\GL2(R)/O(2)R×
>0

Let ε′
1, ε

′
2 denote the usual characters in the torus T of diagonal matrices of GL2.

Write γ = 1
2 (ε

′
1−ε′

2) and κ = 1
2 (ε

′
1+ε′

2). Consider the irreducible representationVa,n

of GL2 with highest weight aγ + nκ . In this expression a and n must be congruent
modulo 2, and Va,n = Syma(Q2) ⊗ det (n−a)/2 is the tensor product of the a-th
symmetric power of the standard representation and the determinant to the ( n−a

2 )-
th power. This representation defines a sheaf Ṽa,n in S̃GL2 and also in the locally
symmetric space

SGL2 = GL2(Z)\GL2(R)/SO(2)R×
>0.

If Z ⊂ T denotes the center of GL2, one has

(−1 0
0 −1

)
∈ GL2(Z) ∩ Z(R) ∩ SO(2)R×

>0

and therefore this element must act trivially on Va,n in order to have Ṽa,n �= 0, i.e. if n
is odd then Ṽa,n = 0. So, we are just interested in the case in which n (and therefore
a) is even. On the other hand, if a = 0, Va,n is one dimensional and

(−1 0
0 1

)
∈ GL2(Z) ∩ O(2)R×

>0

has the effect that the space of global sections of Ṽ0,n is 0 when n/2 is odd.
We summarize the above discussion in the following

Lemma 3 Let i be 1 or 2. For w ∈ WPi , let w · λ be given by aγMi + nκMi , where
γMi = 1

2 (εi − εi+1) and κMi = 1
2 (εi + εi+1). If n is odd, the corresponding sheaf

M̃w·λ is 0. As a and n are congruent modulo 2, we should have a and n even in
order to have a non trivial coefficient system Ṽa,n. Moreover, if a = 0 and n/2
is odd, then H•(SMi ,M̃w·λ) = 0. We denote the set of Weyl elements for which

H•(SMi ,M̃w·λ) �= 0 by W i
(λ).
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208 J. Bajpai

Now, if B ⊂ GL2 is the usual Borel subgroup andT ⊂ B is the subgroup of diagonal
matrices, one can consider the exact sequence in cohomology

H0(ST, ˜H0(n,Va,n)) → H1
c (̃SGL2 , Ṽa,n) → H1(̃SGL2 , Ṽa,n) → H0(ST, ˜H1(n,Va,n))

where n is the Lie algebra of the unipotent radical N of B. By using an argument
similar to the one presented in Lemma 1, we get

H1
c (̃SGL2 , Ṽa,n) = H1

! (̃SGL2 , Ṽa,n) if
a

2
�≡ n

2
mod 2,

H1(̃SGL2 , Ṽa,n) = H1
! (̃SGL2 , Ṽa,n) if

a

2
≡ n

2
mod 2. (3)

In the following subsections we make note of the cohomology groups associated
to the maximal parabolic subgroups P1 and P2 which will be used in the computations
involved to determine the boundary cohomology in the next section.

3.2.1 Cohomology of the face @1

In this case, the Levi M1 is isomorphic to GL2 and therefore Hq(SM1 ,M̃w·λ) = 0
for every q ≥ 2 (see the example 2.1.3 in Subsection 2.1.2 of [15] for the particular
case of GL2 or Theorem 11.4.4 in [4] for a more general statement). The set of Weyl
representatives is given by WP1 = {e, s1, s1s2} where the length of the elements are
respectively 0, 1, 2. By definition,

Hq(∂1,M̃λ) =
⊕

w∈WP1

Hq−�(w)(SM1 ,M̃w·λ)

= Hq(SM1 ,M̃λ) ⊕ Hq−1(SM1 ,M̃s1·λ) ⊕ Hq−2(SM1 ,M̃s1s2·λ).

Therefore,
H0(∂1,M̃λ) = H0(SM1 ,M̃λ)

H1(∂1,M̃λ) = H1(SM1 ,M̃λ) ⊕ H0(SM1 ,M̃s1·λ)
H2(∂1,M̃λ) = H1(SM1 ,M̃s1·λ) ⊕ H0(SM1 ,M̃s1s2·λ)
H3(∂1,M̃λ) = H1(SM1 ,M̃s1s2·λ)

and for every q ≥ 4, the cohomology groups Hq(∂1,M̃λ) = 0.

3.2.2 Cohomology of the face @2

In this case, the Levi M2 is isomorphic to GL2 and therefore Hq(SM2 ,M̃w·λ) = 0 for
every q ≥ 2. The set of Weyl representatives is given by W P2 = {e, s2, s2s1} where
the lengths of the elements are respectively 0, 1, 2. By definition,

Hq(∂2,M̃λ) =
⊕

w∈WP2

Hq−�(w)(SM2 ,M̃w·λ)

= Hq(SM2 ,M̃λ) ⊕ Hq−1(SM2 ,M̃s2·λ) ⊕ Hq−2(SM2 ,M̃s2s1·λ).
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Boundary and Eisenstein cohomology of SL3(Z) 209

Therefore,

H0(∂2,M̃λ) = H0(SM2 ,M̃λ)

H1(∂2,M̃λ) = H1(SM2 ,M̃λ) ⊕ H0(SM2 ,M̃s2·λ)
H2(∂2,M̃λ) = H1(SM2 ,M̃s2·λ) ⊕ H0(SM2 ,M̃s2s1·λ)
H3(∂2,M̃λ) = H1(SM2 ,M̃s2s1·λ)

and for every q ≥ 4, the cohomology groups Hq(∂2,M̃λ) = 0.

4 Boundary cohomology

In this section we calculate the cohomology of the boundary by giving a complete
description of the spectral sequence. The covering of the boundary of the Borel–Serre
compactification defines a spectral sequence in cohomology.

E p,q
1 =

⊕

prk(P)=(p+1)

Hq(∂P,M̃λ) ⇒ H p+q(∂S,M̃λ)

and the nonzero terms of E p,q
1 are for

(p, q) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)} . (4)

More precisely,

E0,q
1 =

2⊕

i=1

Hq(∂i ,M̃λ)

=
2⊕

i=1

[ ⊕

w∈WPi

Hq−�(w)(SMi ,M̃w·λ)
]

,

E1,q
1 = Hq(∂0,M̃λ)

=
⊕

w∈WP0 :�(w)=q

H0(SM0 ,M̃w·λ). (5)

Since SL3 is of rank two, the spectral sequence has only two columns namely
E0,q
1 , E1,q

1 and to study the boundary cohomology, the task reduces to analyze the
following morphisms

E0,q
1

d0,q
1−−→ E1,q

1 (6)

where d0,q
1 is the differential map and the higher differentials vanish. One has

E0,q
2 := K er(d0,q

1 ) and E1,q
2 := Coker(d0,q

1 ).
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In addition, due to be in rank 2 situation, the spectral sequence degenerates in degree
2. Therefore, we can use the fact that

Hk(∂S,M̃λ) =
⊕

p+q=k

E p,q
2 . (7)

In other words, let us now consider the short exact sequence

0 −→ E1,q−1
2 −→ Hq(∂S,M̃λ) −→ E0,q

2 −→ 0 . (8)

From now on, we will denote by r1 : H•(∂1,M̃λ) → H•(∂0,M̃λ) and r2 :
H•(∂2,M̃λ) → H•(∂0,M̃λ) the natural restriction morphisms.

4.1 Case 1:m1 = 0 andm2 = 0 (trivial coefficient system)

Following Lemmas 1 and 3 from Sect. 3, we get

W1
(λ) = {e}, W2

(λ) = {e} and W0
(λ) = {e, s1s2s1}.

By using (5) we record the values of E0,q
1 and E1,q

1 for the distinct values of q

below. Note that following (4) we know that for q ≥ 4, Ei,q
1 = 0 for i = 0, 1.

E0,q
1 =

{
H0(SM1 ,M̃e·λ) ⊕ H0(SM2 ,M̃e·λ) ∼= Q ⊕ Q, q = 0

0, otherwise
, (9)

and

E1,q
1 =

⎧
⎪⎨

⎪⎩

H0(SM0 ,M̃e·λ) ∼= Q, q = 0

H0(SM0 ,M̃s1s2s1·λ) ∼= Q, q = 3

0, otherwise

. (10)

We now make a thorough analysis of (6) to get the complete description of the
spaces E0,q

2 and E1,q
2 which will give us the cohomology Hq(∂S̄,M̃λ). We begin

with q = 0.

4.1.1 At the level q = 0

Observe that the short exact sequence (8) reduces to

0 −→ H0(∂S,M̃λ) −→ E0,0
2 −→ 0.

To compute E0,0
2 , consider the differential d0,0

1 : E0,0
1 → E1,0

1 . Following (9) and

(10), we have d0,0
1 : Q⊕ Q −→ Q and we know that the differential d0,0

1 is surjective
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(see [11]). Therefore

E0,0
2 := K er(d0,0

1 ) = Q and E1,0
2 := Coker(d0,0

1 ) = 0. (11)

Hence, we get

H0(∂S,M̃λ) = Q.

4.1.2 At the level q = 1

Following (11), in this case, our short exact sequence (8) reduces to

0 −→ H1(∂S,M̃λ) −→ E0,1
2 −→ 0,

and we need to compute E0,1
2 . Consider the differential d0,1

1 : E0,1
1 −→ E1,1

1 and

following (9) and (10), we observe that d0,1
1 is a map between zero spaces. Therefore,

we obtain

E0,1
2 = 0 and E1,1

2 = 0.

As a result, we get

H1(∂S,M̃λ) = 0.

4.1.3 At the level q = 2

Following the similar process as in level q = 1, we get

E0,2
2 = 0 and E1,2

2 = 0. (12)

This results into

H2(∂S,M̃λ) = 0.

4.1.4 At the level q = 3

Following (12), in this case, the short exact sequence (8) reduces to

0 −→ H3(∂S,M̃λ) −→ E0,3
2 −→ 0,

and we need to compute E0,3
2 . Consider the differential d0,3

1 : E0,3
1 −→ E1,3

1 and

following (9) and (10), we have d0,3
1 : 0 −→ Q. Therefore,

E0,3
2 = 0 and E1,3

2 = Q. (13)
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This gives us

H3(∂S,M̃λ) = 0.

4.1.5 At the level q = 4

Following (13), in this case, the short exact sequence (8) reduces to

0 −→ Q −→ H4(∂S,M̃λ) −→ E0,4
2 −→ 0,

and we need to compute E0,4
2 . Consider the differential d0,4

1 : E0,4
1 −→ E1,4

1 and

following (9) and (10), we have d0,4
1 : 0 −→ 0. Therefore,

E0,4
2 = 0 and E1,4

2 = 0,

and we get

H4(∂S,M̃λ) = Q.

We can summarize the above discussion as follows :

Hq(∂S,M̃λ) =
{

Q for q = 0, 4
0 otherwise

.

4.2 Case 2:m1 = 0,m2 �= 0,m2 even

Following the parity conditions established in Sect. 3, we find that

W1
(λ) = {e}, W2

(λ) = {e, s2s1} and W0
(λ) = {e, s1s2s1}.

Following (5) we write

E0,q
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(SM2 ,M̃e·λ), q = 0

H1(SM1 ,M̃e·λ), q = 1

H1(SM2 ,M̃s2s1·λ), q = 3

0, otherwise

,

and

E1,q
1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0(SM0 ,M̃e·λ) ∼= Q , q = 0

H0(SM0 ,M̃s1s2s1·λ) ∼= Q , q = 3

0 , otherwise

. (14)
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4.2.1 At the level q = 0

In this case, the short exact sequence (8) is

0 −→ H0(∂S,M̃λ) −→ E0,0
2 −→ 0.

Consider the differential d0,0
1 : E0,0

1 −→ E1,0
1 which is an isomorphism

d0,0
1 : H0(SM2 ,M̃e·λ) −→ H0(SM0 ,M̃e·λ).

Therefore, we obtain

E0,0
2 = 0 and E1,0

2 = 0.

As a result, we get

H0(∂S,M̃λ) = 0.

4.2.2 At the level q = 1

In this case, the short exact sequence (8) becomes

0 −→ H1(∂S,M̃λ) −→ E0,1
2 −→ 0.

Consider the differential d0,1
1 : E0,1

1 −→ E1,1
1 which, from (3), is simply a zero

morphism

d0,1
1 : H1

! (SM1 ,M̃e·λ) −→ 0.

Therefore, we obtain

E0,1
2 = H1

! (SM1 ,M̃e·λ) and E1,1
2 = 0.

As a result, we get

H1(∂S,M̃λ) = H1
! (SM1 ,M̃e·λ).

4.2.3 At the level q = 2

The short exact sequence becomes

0 −→ H2(∂S,M̃λ) −→ E0,2
2 −→ 0,
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and following the differential d0,2
1 : E0,2

1 −→ E1,2
1 which is again simply the zero

morphism

d0,2
1 : 0 −→ 0,

gives us

E0,2
2 = 0 and E1,2

2 = 0.

Hence,

H2(∂S,M̃λ) = 0.

4.2.4 At the level q = 3

The short exact sequence (8) reduces to

0 −→ H3(∂S,M̃λ) −→ E0,3
2 −→ 0,

and the differential d0,3
1 : E0,3

1 −→ E1,3
1 is an epimorphism

d0,3
1 : H1(SM2 ,M̃s2s1·λ) −→ H0(SM0 ,M̃s1s2s1.λ),

Therefore

E1,3
2 = 0 and E0,3

2 = H1
! (SM2 ,M̃s2s1.λ).

Since E1,3
2 = 0 and E0,4

2 = 0, we realize that Hq(∂S,M̃λ) = 0 for every q ≥ 4.
We summarize the discussion of this case as follows

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1
! (SM1 ,M̃e.λ), q = 1

H1
! (SM2 ,M̃s2s1·λ), q = 3

0, otherwise

.

4.3 Case 3 :m2 = 0,m1 �= 0,m1 even

Following the parity conditions established in Sect. 3, we find that

W1
(λ) = {e, s1s2}, W2

(λ) = {e} and W0
(λ) = {e, s1s2s1}.
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Following (5),

E0,q
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(SM1 ,M̃e·λ), q = 0

H1(SM2 ,M̃e·λ), q = 1

H1(SM1 ,M̃s1s2·λ), q = 3

0, otherwise

,

and the spaces E1,q
1 in this case are exactly same as described in the above two cases

expressed by (14). Following similar steps taken in Sect. 4.2, we obtain the following

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1
! (SM2 ,M̃e.λ), q = 1

H1
! (SM1 ,M̃s1s2·λ), q = 3

0, otherwise

.

4.4 Case 4:m1 �= 0,m1 even andm2 �= 0,m2 even

Following the parity conditions established in Sect. 3, we find that

W1
(λ) = {e, s1s2}, W2

(λ) = {e, s2s1} and W0
(λ) = {e, s1s2s1}.

Following (5),

E0,q
1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1(SM2 ,M̃e·λ) ⊕ H1(SM2 ,M̃e·λ), q = 1

H1(SM1 ,M̃s1s2·λ) ⊕ H1(SM2 ,M̃s2s1·λ), q = 3

0, otherwise

,

and the spaces E1,q
1 are described by (14). Combining the process performed for the

previous two cases in Sects. 4.2 and 4.3, we get the following result
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Hq(∂S,Mλ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q ⊕ H1
! (SM1 ,M̃e·λ) ⊕ H1

! (SM2 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1s2·λ) ⊕ H1

! (SM2 ,M̃s2s1.λ) ⊕ Q, q = 3

0, otherwise

.

4.5 Case 5:m1 �= 0,m1 even,m2 odd

Following the parity conditions established in Sect. 3 and (5), we find that

W1
(λ) = {s1, s1s2}, W2

(λ) = {e, s2} and W0
(λ) = {s1, s1s2},

and

E0,q
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(SM2 ,M̃e·λ), q = 1

H1(SM1 ,M̃s1·λ) ⊕ H1(SM2 ,M̃s2·λ), q = 2

H1(SM1 ,M̃s1s2·λ), q = 3

0, otherwise

,

and

E1,q
1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0(SM0 ,M̃s1·λ) ∼= Q, q = 1

H0(SM0 ,M̃s1s2·λ) ∼= Q, q = 2

0 , otherwise

. (15)

Following the similar computations we get all the spaces E p,q
2 for p = 0, 1 as follows

E0,q
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
! (SM2 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ), q = 2

H1
! (SM1 ,M̃s1s2·λ), q = 3

0, otherwise

,

and
E1,q
2 = 0, ∀q.

Following (7), we obtain

Hq(∂S,M̃λ) = E0,q
2 , ∀ q.
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4.6 Case 6:m1 = 0,m2 odd

Following the parity conditions established in Sect. 3 and (5), we find that

W1
(λ) = {s1, s1s2}, W2

(λ) = {s2} and W0
(λ) = {s1, s1s2},

and

E0,q
1 =

{
H1(SM1 ,M̃s1·λ) ⊕ H0(SM1 ,M̃s1s2·λ) ⊕ H1(SM2 ,M̃s2·λ), q=2
0, otherwise

,

and the spaces E1,q
1 are described by (15). Following the similar computations we

get all the spaces E p,q
2 for p = 0, 1 as follows

E0,q
2 =

{
H1

! (SM1 ,M̃s1·λ) ⊕ W ⊕ H1
! (SM2 ,M̃s2·λ), q = 2

0, otherwise
,

where W is the one dimensional space

W =
{
(ξ, ν) ∈ H0(SM1 ,M̃s1s2·λ) ⊕ H1

Eis(S
M2 ,M̃s2·λ) | r1(ξ) = r2(ν)

}

along with r1 and r2 the restriction morphisms defined as follows

H•(SM2 ,M̃s2·λ)
r2−→ H•(SM0 ,M̃s1s2·λ)

H•(SM1 ,M̃s1s2·λ)
r1−→ H•(SM0 ,M̃s1s2·λ).

Both r1 and r2 are surjective. This fact follows directly by applying Kostant’s
formula to the Levi quotient of each of the maximal parabolic subgroups. Then, the
target spaces of r1 and r2 are just the boundary and the Eisenstein cohomology of GL2,
respectively. From the above properties of r1 and r2, we conclude that W is isomorphic
to H0(SM0 ,M̃s1s2·λ), which is a 1-dimensional space.

However,

E1,q
2 =

{
H0(SM2 ,M̃s1·λ) ∼= Q, q = 1
0, otherwise

,

Now, following (7), we obtain

Hq(∂S,M̃λ) =
⎧
⎨

⎩

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ) ⊕ Q ⊕ Q, q = 2

0 , otherwise
,
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4.7 Case 7:m1 odd,m2 = 0

Following the parity conditions established in Sect. 3 we find that

W1
(λ) = {s1}, W2

(λ) = {s2, s2s1} and W0
(λ) = {s2, s2s1}.

Observe that this is exactly the reflection of case 6 described in Sect. 4.6. The roles
of parabolics P1 and P2 will be interchanged. Hence, following the similar arguments
we will obtain

Hq(∂S,M̃λ) =
⎧
⎨

⎩

H1
! (SM2 ,M̃s2·λ) ⊕ H1

! (SM1 ,M̃s1·λ) ⊕ Q ⊕ Q, q = 2

0 , otherwise
.

4.8 Case 8:m1 odd,m2 �= 0,m2 even

Following the parity conditions established in Sect. 3 we find that

W1
(λ) = {e, s1}, W2

(λ) = {s2, s2s1} and W0
(λ) = {s2, s2s1}.

Observe that this is exactly the reflection of case 5 described in Sect. 4.5. The roles of
parabolics P1 and P2 will be interchanged. Hence, we will obtain

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
! (SM1 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ), q = 2

H1
! (SM2 ,M̃s2s1·λ), q = 3

0, otherwise

.

4.9 Case 9:m1 odd,m2 odd

By checking the parity conditions for standard parabolics, following Lemmas 1 and

3, we see that W i
(λ) = ∅ for i = 0, 1, 2. This simply implies that

Hq(∂S,M̃λ) = 0, ∀q.

5 Euler characteristic

We quickly review the basics about Euler characteristic which is our important tool to
obtain the information about Eisenstein cohomology discussed in the next section. The
homological Euler characteristic χh of a group � with coefficients in a representation
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V is defined by

χh(�,V) =
∞∑

i=0

(−1)i dim Hi (�,V). (16)

For details on the above formula see [5,27]. We recall the definition of orbifold Euler
characteristic. If � is torsion free, then the orbifold Euler characteristic is defined as
χorb(�) = χh(�). If � has torsion elements and admits a finite index torsion free
subgroup �′, then the orbifold Euler characteristic of � is given by

χorb(�) = 1

[� : �′]χh(�′). (17)

One important fact is that, followingMinkowski, every arithmetic group of rank greater
than one contains a torsion free finite index subgroup and therefore the concept of
orbifold Euler characteristic is well defined in this setting. If � has torion elements
then we make use of the following formula discovered by Wall in [29].

χh(�,V) =
∑

(T )

χorb(C(T ))tr(T −1|V). (18)

Otherwise, we use the formula described in Eq. (16). The sum runs over all the con-
jugacy classes in � of its torsion elements T , denoted by (T ), and C(T ) denotes the
centralizer of T in �. From now on, orbifold Euler characteristic χorb will be simply
denoted by χ . Orbifold Euler characteristic has the following properties.

(1) If � is finitely generated torsion free group then χ(�) is defined as χh(�, Q).

(2) If � is finite of order |�| then χ(�) = 1
|�| .

(3) Let �, �1 and �2 be groups such that 1 −→ �1 −→ � −→ �2 −→ 1 is exact
then χ(�) = χ(�1)χ(�2).

We now explain the use of the above properties by walking through the detailed
computation of the Euler characteristic of SL2(Z) and GL2(Z) with respect to their
highest weight representations, which we explain shortly.

We denote

T3 =
(

0 1
−1 −1

)
, T4 =

(
0 1

−1 0

)
and T6 =

(
0 −1
1 1

)
.

Then following [18], we know that when � is GLn(Z) (or SLn(Z) with n odd) one
has an expression of the form

χh(�,V) =
∑

A

Res( f A)χ(C(A))T r(A−1|V), (19)

where f A denotes the characteristic polynomial of the matrix A.
Now we will explain Eq. (19) in detail. The summation is over all possible block

diagonal matrices A ∈ � satisfying the following conditions:
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• The blocks in the diagonal belong to the set {1,−1, T3, T4, T6}.
• The blocks T3, T4 and T6 appear at most once and 1,−1 appear at most twice.
• A change in the order of the blocks in the diagonal does not count as a different
element.

So, for example, if n > 10, the sum is empty and χh(�,V) = 0.
In this case, one can see that every A satisfying these properties has the same

eigenvalues as A−1. Evenmore every such A is conjugate, overC, to A−1 and therefore
T r(A−1|V) = T r(A|V). We will use these facts in what follows.

For other groups, the analogous formula of (18) is developed by Chiswell in [6]. Let
us explain briefly the notation Res( f ). Let f1 = ∏

i (x − αi ) and f2 = ∏
j (x − β j )

be two polynomials. Then by the resultant of f1 and f2, we mean Res( f1, f2) =∏
i, j (αi − β j ). If the characteristic polynomial f is a power of an irreducible poly-

nomial then we define Res( f ) = 1. Let f = f1 f2 . . . fd , where each fi is a power
of an irreducible polynomial over Q and they are relatively prime pairwise. Then, we
define Res( f ) = ∏

i< j Res( fi , f j ).

5.1 Example: Euler characteristic of SL2(Z) and GL2(Z)

Consider the group �0 = SL2(Z)/{±I2}. For any subgroup � ∈ SL2(Z) containing
−I2, we will denote by � its corresponding subgroup in �0, i.e. � = �/{±I2}.

Consider the principal congruence subgroup �(2). It is of index 6 and torsion free.
More precisely, �(2)\H is topologically P

1 − {0, 1,∞}. Therefore,

χ(�(2)) = χ(P1 − {0, 1,∞}) = χ(P1) − 3 = 2 − 3 = −1.

Using this we immediately get

χ(�(2)) = χ(�(2))χ({±I2}) = −1 × 1

2
= −1

2
.

Considering the following short exact sequence

1 −→ �(2) −→ SL2(Z) −→ SL2(Z/2Z) −→ 1

we obtain χ(SL2(Z)) = − 1
12 and χ(�0) = − 1

6 . Similarly, the exact sequence

1 −→ SL2(Z) → GL2(Z)
det−−→ {±I2} −→ 1

where det : GL2(Z) −→ {±I2} is simply the determinant map, gives χ(GL2(Z)) =
− 1

24 .
For any torsion free arithmetic subgroup � ⊂ SLn(R) we have the Gauss-Bonnet

formula

χh(�\X) =
∫

�\X
ωG B
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Table 2 Torsion elements in GL2(Z)

S. no. Polynomial Expanded form In SL2(Z)

1 �
2

1
(x − 1)2 Yes

2 �1�2 (x − 1)(x + 1) No

3 �2
2

(x + 1)2 Yes

4 �3 x2 + x + 1 Yes

5 �4 x2 + 1 Yes

6 �6 x2 − x + 1 Yes

where ωG B is the Gauss-Bonnet-Chern differential form and X = SLn(R)/SO(n, R),
see [10]. This differential form is zero if n > 2 and therefore for any torsion free
congruence subgroup � ⊂ SLn(Z), χh(�\X) = 0. In particular, by the definition
of orbifold Euler characteristic given by (17), this implies that χ(SL3(Z)) = 0. We
will make use of this fact in the calculation of the homological Euler characteristic of
SL3(Z).

In the preceding analysis, all the χ(�) have been computed with respect to the
trivial coefficient system. In case of nontrivial coefficient system, the whole game
of computing χ(�) becomes slightly delicate and interesting. To deliver the taste of
its complication we quickly motivate the reader by reviewing the computations of
χ(SL2(Z), Vm) and χ(GL2(Z), Vm1,m2) where Vm and Vm1,m2 are the highest weight
irreducible representations of SL2 and GL2 respectively. For notational convenience
we will always denote the standard representation of SLn(Z) and GLn(Z) by V . In
case of SL2 and GL2, all the highest weight representations are of the form Vm :=
Symm V and Vm1,m2 := Symm1V ⊗ detm2 respectively. Here Symm V denotes the
mth-symmetric power of the standard representation V .

Let �n be the n-th cyclotomic polynomial then we list all the characteristic poly-
nomials of torsion elements in SL2(Z) and GL2(Z) in the following table (Tables 2,
3, 4).

Following Eq. (18), we compute the traces of all the torsion elements T in SL2(Z)

and GL2(Z)with respect to the highest weight representations Vm and Vm1,m2 for SL2
and GL2 respectively.

For any torsion element T ∈ SL2(Z), we define

Hm(T ) := T r(T −1|Vm) = T r(T −1|Symm V ) =
∑

a+b=m

λa
1λ

b
2.

where λ1 and λ2 are the two eigenvalues of T . From now on we simply denote the
representative of n torsion element T by its characteristic polynomial �n . Therefore,

Now following Eqs. (16) and (18)

χh(SL2(Z), Vm) = − 1

12
Hm(�2

1) − 1

12
Hm(�2

2) + 2

6
Hm(�3)

+ 2

4
Hm(�4) + 2

6
Hm(�6). (20)
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Table 3 Traces of torsion elements of SL2(Z)

Case T �n C(T ) χ(C(T )) Hm (T )

A I2 �2
1 SL2(Z) − 1

12 m + 1

B −I2 �2
2 SL2(Z) − 1

12 (−1)m (m + 1)

C

(
0 1

−1 −1

)±
�3 C6

1
6 (1, −1, 0)a

D

(
0 1

−1 0

)±
�4 C4

1
4 (1, 0, −1, 0)

E

(
0 −1
1 1

)±
�6 C6

1
6 (1, 1, 0, −1,−1, 0)

a (1, −1, 0) signifies H3k (T ) = 1, H3k+1(T ) = −1 and H3k+2(T ) = 0

Weobtain the values ofχh(SL2(Z), Vm)by computing each factor of the aboveEq. (20)
up to modulo 12. All these values can be found in the last column of the Table 5.

Similarly, let us discuss the χh(GL2(Z), Vm1,m2). One has the following table,
Now following Eqs. (16) and (19)

χh(GL2(Z), Vm1,m2) = − 1

24
Hm1,m2(�

2
1) − 1

24
Hm1,m2(�

2
2) − 2

4
Hm1,m2(�1�2)

+1

6
Hm1,m2(�3) + 1

4
Hm1,m2(�4) + 1

6
Hm1,m2(�6). (21)

Same as in the case of SL2(Z), we obtain the values of χh(GL2(Z), Vm1,m2) by
computing each factor of the above Eq. (21) up to m1 modulo 12 and m2 modulo 2.
All these values are encoded in the second and third column of the Table 5. Note that
in what follows Vm will denote Vm,0 when it is considered as a representation of GL2.

It is well known that

Sm+2 = H1
cusp(GL2(Z), Vm ⊗C) ⊂ H1

! (GL2(Z), Vm ⊗C) ⊂ H1(GL2(Z), Vm ⊗C).

(22)
One can show that in fact these inclusions are isomorphisms because H1(GL2(Z),

C)=0, and for m > 0 we have H0(GL2(Z), Vm)=H2(GL2(Z),Vm)=0 and therefore

dim H1(GL2(Z), Vm) = −χh(GL2(Z), Vm) = dim Sm+2.

Hence, we may conclude that for all m

H1
cusp(GL2(Z), Vm ⊗ C) = H1(GL2(Z), Vm ⊗ C) = H1

! (GL2(Z), Vm) ⊗ C.

Remark 4 Note that if we do not want to get into the transcendental aspects of the
theory of cusp forms (Eichler-Shimura isomorphism) then we could get the dimension
of Sm+2 by using the information given in Section 2.1.3 from Chapter 2 of [15].
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Table 5 Euler characteristics of SL2(Z) and GL2(Z)

m = 12� + k χh(GL2(Z), Vm ) χh(GL2(Z), Vm ⊗ det) χh(SL2(Z), Vm )

k = 0 −� + 1 −� −2� + 1

k = 1 0 0 0

k = 2 −� −� − 1 −2� − 1

k = 3 0 0 0

k = 4 −� −� − 1 −2� − 1

k = 5 0 0 0

k = 6 −� −� − 1 −2� − 1

k = 7 0 0 0

k = 8 −� −� − 1 −2� − 1

k = 9 0 0 0

k = 10 −� − 1 −� − 2 −2� − 3

k = 11 0 0 0

We present the following isomorphism for intuition. One can recover a simple proof
by using the data of the Table 5 and the Kostant formula.

H1(SL2(Z), Vm) = H1
Eis(SL2(Z), Vm) ⊕ H1

! (SL2(Z), Vm)

= H1
Eis(GL2(Z), Vm ⊗ det) ⊕ H1

! (SL2(Z), Vm)

= H1
Eis(GL2(Z), Vm ⊗ det) ⊕ H1

! (GL2(Z), Vm ⊗ det)

⊕H1
! (GL2(Z), Vm)

= H1
Eis(GL2(Z), Vm ⊗ det) ⊕ H1

! (GL2(Z), Vm)

⊕H1
! (GL2(Z), Vm)

5.2 Torsion elements in SL3(Z)

Following Eq. (18) and above discussion, we know that in order to compute
χh(SL3(Z),V) with respect to the coefficient system V , we need to know the conju-
gacy classes of all torsion elements. To do that we divide the study into the possible
characteristic polynomials of the representatives of these conjugacy classes, and these
are (Tables 6, 7):

Following Eq. (18), we compute the traces T r(T −1|Mλ) of all the torsion elements
T in SL3(Z) and GL3(Z)with respect to highest weight coefficient systemMλ where
λ = m1ε1 + m2(ε1 + ε2) and λ = m1ε1 + m2(ε1 + ε2) + m3(ε1 + ε2 + ε3) for SL3
and GL3, respectively.

Before moving to the next step, we will explain the reader about the use of the
notationMλ. For convenience and to make the role of the coefficients m1, m2 in case
of SL3(Z) and m1, m2, m3 in case of GL3(Z) as clear as possible in the highest weight
λ, we will often use these coefficients in the subscript of the notationMλ in place of
λ, i.e. we write
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Table 6 Torsion elements in GL3(Z)

S. no. Polynomial Expanded form In SL3(Z)

1 �
3

1
(x − 1)3 Yes

2 �
2

1
�2 (x − 1)2(x + 1) No

3 �1�
2
2

(x − 1)(x + 1)2 Yes

4 �1�3 (x − 1)(x2 + x + 1) Yes

5 �1�4 (x − 1)(x2 + 1) Yes

6 �1�6 (x − 1)(x2 − x + 1) Yes

7 �
3

2
(x + 1)3 No

8 �2�3 (x + 1)(x2 + x + 1) No

9 �2�4 (x + 1)(x2 + 1) No

10 �2�6 (x + 1)(x2 − x + 1) No

Table 7 Torsion elements of SL3(Z)

Case T �n C(T ) χ(C(T )) Res( f , g) Res( f , g)χ(C(T ))

A I3 �3
1 SL3(Z) 0 0 0

B

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ �1�
2
2 GL2(Z) − 1

24 4 − 1
6

C

⎛

⎝
1 0 0
0 0 −1
0 1 −1

⎞

⎠ �1�3 C6
1
6 3 1

2

D

⎛

⎝
1 0 0
0 0 1
0 −1 0

⎞

⎠ �1�4 C4
1
4 2 1

2

E

⎛

⎝
1 0 0
0 0 1
0 −1 1

⎞

⎠ �1�6 C6
1
6 1 1

6

Mλ :=
⎧
⎨

⎩

Mm1,m2 , for SL3

Mm1,m2,m3 , for GL3

.

For any torsion element T ∈ SL3(Z), we define

Hm(T ) := T r(T −1|Mm) = T r(T −1|Symm V ) =
∑

a+b+c=m

μa
1μ

b
2μ

c
3.

where μ1, μ2 and μ3 are the eigenvalues of T and V denotes the standard represen-
tation of SL3 (and GL3). Note that Mm above simply denotes the highest weight
representation Mm,0 of SL3. We also use the notation
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Hm1,m2(�) := T r(T −1|Mm1,m2) and Hm1,m2,m3(�) := T r(T −1|Mm1,m2,m3),

where T is a torsion element with characteristic polynomial �. Therefore,
LetMm1,m2 denote the irreducible representation of SL3 with highest weight λ =

m1ε1 + m2(ε1 + ε2). Following Eqs. (16) and (19) we have

χh(SL3(Z),Mm1,m2) = −1

6
Hm1,m2(�1�

2
2) + 1

2
Hm1,m2(�1�3) (23)

+1

2
Hm1,m2(�1�4) + 1

6
Hm1,m2(�1�6).

To obtain the complete information of χh(SL3(Z),Mm1,m2), let us compute the
Hm1,m2(�1�

2
2), Hm1,m2(�1�3), Hm1,m2(�1�4) and Hm1,m2(�1�6). One could do

this by using the Weyl character formula as defined in Chapter 24 of [8],

Hm1,m2(�1�k) = det

(
Hm1+m2(�1�k) Hm1+m2+1(�1�k)

Hm2−1(�1�k) Hm2(�1�k)

)
,

but we will use another argument to calculate these traces. For that we consider the
case GL3(Z) and obtain the needed results as a corollary.

Lemma 5 Let ξk = e
2π i

k , then

Hm1,m2,m3(�1�k) =
m2+m2+m3∑

p1=m2+m3

m2+m3∑

p2=m3

p1∑

q=p2

ξ
2q−(p1+p2)
k ,

for k = 3, 4, 6 and

Hm1,m2,m3(�1�
2
2) =

m1+m2+m3∑

p1=m2+m3

m2+m3∑

p2=m3

p1∑

q=p2

ξ
2q−(p1+p2)
2 .

Proof We use the description ofMm1,m2,m3 given in [9]. In particular, one has a basis

{
L

(
p1 p2

q

)
| m1+m2+m3 ≥ p1 ≥ m2 + m3, m2 + m3 ≥ p2 ≥ m3, p1 ≥ q ≥ p2

}

such that under the action of gl3,

(E1,1 − E2,2)

(
L

(
p1 p2

q

))
= (2q − (p1 + p2))L

(
p1 p2

q

)
.

If we denote by ρm1,m2,m3 the representation corresponding toMm1,m2,m3 then the
diagram
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GL3(C)

exp

ρm1,m2,m3 GL(Mm1,m2,m3)

exp

gl3(C)
dρm1,m2,m3

gl(Mm1,m2,m3)

is commutative. Therefore

⎛

⎝
ξk 0 0
0 ξ−1

k 0
0 0 1

⎞

⎠ L

(
p1 p2

q

)
= ξ

2q−(p1+p2)
k L

(
p1 p2

q

)

and the result follows simply by using the fact that

Hm1,m2,m3(�1�k) = T r

⎛

⎝

⎛

⎝
ξk 0 0
0 ξ−1

k 0
0 0 1

⎞

⎠ ,Mm1,m2,m3

⎞

⎠ .

��
We denote Ck(p1, p2) = ∑p1

q=p2 ξ
2q−(p1+p2)
k , for k = 2, 3, 4, 6. By using the fact

that

ξ
2( p1+p2

2 − j)−(p1+p2)
k =ξ

−2 j
k = (ξ

2 j
k )−1 = (ξ

2( p1+p2
2 + j)−(p1+p2)

k )−1 ∀ j ∈ Z,

one has that

Ck(p1, p2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+∑ p1+p2
2 −1

q=p2

(
ξ
2q−(p1+p2)
k +(ξ

2q−(p1+p2)
k )−1

)
, p1 ≡ p2(mod 2)

∑ p1+p2−1
2

q=p2

(
ξ
2q−(p1+p2)
k +(ξ

2q−(p1+p2)
k )−1

)
, otherwise

.

Lemma 6

C6(p1, p2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, p1 − p2 ≡ 0(mod 6)

1, p1 − p2 ≡ 1(mod 6)

0, p1 − p2 ≡ 2(mod 6)

−1, p1 − p2 ≡ 3(mod 6)

−1, p1 − p2 ≡ 4(mod 6)

0, p1 − p2 ≡ 5(mod 6)

,
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Proof One can check that

ξ�
6 + ξ−�

6 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, � ≡ 0(mod 6)

1, � ≡ 1(mod 6)

−1, � ≡ 2(mod 6)

−2, � ≡ 3(mod 6)

−1, � ≡ 4(mod 6)

1, � ≡ 5(mod 6)

,

This implies that for every integer �,

3∑

j=1

ξ
�+2 j
6 + ξ

−(�+2 j)
6 = 0,

in other words, the sum of three consecutive terms in the formula for C6(p1, p2) is
zero and C6(p1, p2) only depends on p1 − p2 modulo 6. ��

Following the similar procedurewe deduce the values ofC4(p1, p2) andC3(p1, p2)
which we summarize in the following lemma.

Lemma 7

C4(p1, p2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, p1 − p2 ≡ 0(mod 4)

0, p1 − p2 ≡ 1(mod 4)

−1, p1 − p2 ≡ 2(mod 4)

0, p1 − p2 ≡ 3(mod 4)

,

and

C3(p1, p2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, p1 − p2 ≡ 0(mod 3)

−1, p1 − p2 ≡ 1(mod 3)

0, p1 − p2 ≡ 2(mod 3)

.

Remark 8 For k = 3, 4, 6, the sum of the Ck(p1, p2) for the different possible con-
gruences of p1 − p2 modulo k is zero, and this implies that

Hm1,m2,m3(�1�k) =
m1+m2+m3∑

p1=m2+m3

m2+m3∑

p2=m3

Ck(p1, p2)

depends only on the congruences of m1, m2 and m3 modulo k.
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Following the above discussion, it is straightforward to prove the following

Lemma 9 For m1, m2, m3 ∈ N and k = 3, 4, 6, let i and j be (m1 mod k) + 1 and
(m2 mod k) + 1 respectively. Then Hm1,m2,m3(�1�k) is the (i, j)-entry of the matrix
Mk where

M6=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 2 2 1 0 0
2 3 2 0 −1 0
2 2 0 −2 −2 0
1 0 −2 −3 −2 0
0 −1 −2 −2 −1 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, M4=

⎛

⎜⎜⎝

1 1 0 0
1 0 −1 0
0 −1 −1 0
0 0 0 0

⎞

⎟⎟⎠ and M3=
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ .

Lemma 10 For m1, m2, m3 ∈ N, let i and j be (m1 mod 2) + 1 and (m2 mod 2) + 1
respectively. Then Hm1,m2,m3(�1�

2
2) is the (i, j)-entry of the matrix M2, where

M2 =
⎛

⎝
1 + m1+m2

2 −m2+1
2

−m1+1
2 0

⎞

⎠

Proof We have

C2(p1, p2) =
⎧
⎨

⎩

p1 − p2 + 1, p1 ≡ p2(mod 2)

−(p1 − p2 + 1), otherwise
,

and

Hm1,m2,m3(�1�
2
2) =

m1+m2+m3∑

p1=m2+m3

m2+m3∑

p2=m3

(−1)p1+p2(p1 − p2 + 1).

We now make a case by case study with respect to the parity of m1 and m2. If m2
is even then for a fixed p1,

m2+m3∑

p2=m3

(−1)p1+p2(p1 − p2 + 1) = (−1)p1+m3

(
p1 + 1 − m2

2
− m3

)
.

Moreover, If m1 is even then

Hm1,m2,m3(�1�
2
2) =

m1+m2+m3∑

p1=m2+m3

(−1)p1+m3

(
p1 + 1 − m2

2
− m3

)
= 1 + m1 + m2

2
.
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On the other hand, if m1 is odd then

Hm1,m2,m3(�1�
2
2) =

m1+m2+m3∑

p1=m2+m3

(−1)p1+m3

(
p1 + 1 − m2

2

)
= −m1 + 1

2
.

Now, if m2 is odd then for a fixed p1,

m2+m3∑

p2=m3

(−1)p1+p2(p1 − p2 + 1) = (−1)p1+m3

(
m2 + 1

2

)

and this depends only on the parity of p1. Hence,

Hm1,m2,m3(�1�
2
2) =

⎧
⎨

⎩

−m2+1
2 , p1 ≡ 0(mod 2)

0, otherwise
.

��

5.3 Euler characteristic of SL3(Z)with respect to the highest weight
representations

We compute theχh(SL3(Z),Mm1,m2) in the following table by computing each factor
of the above Eq. (23) up to modulo 12, which is achieved simply by following the
discussion of previous Sect. 5.2 and more explicitly from Lemmas 9 and 10. All these
values are encoded in the following table consisting of 144 entries where rows run
from 0 ≤ i ≤ 11 representingm1 ≡ i(mod 12) and columns runs through 0 ≤ j ≤ 11
representing m2 ≡ j(mod 12). To accommodate the data with the available space, the
table has been divided into two different tables of order 12 × 6 each. In the first table
(Table 8) j runs from 0(mod 12) to 5(mod 12) and in the second table (Table 9) from
6(mod 12) to 11(mod 12) and in both tables i runs from 0(mod 12) to 11(mod 12).

Once the entries of the table are computed, we get complete information about the
Euler characteristics of SL3(Z) which is summarized in the following

Theorem 11 The Euler characteristics ofSL3(Z) with coefficient in any highest weight
representationMm1,m2 , can be described by one of the following four cases, depending
on the parity of m1 and m2. More precisely,

χh(SL3(Z),Mm1,m2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 − dim Sm1+2 − dim Sm2+2, m1, m2 both even

− dim Sm1+2 + dim Sm1+m2+3, m1 even, m2 odd

− dim Sm2+2 + dim Sm1+m2+3, m1 odd, m2 even

0, m1, m2 both odd

,

(24)
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where Sm+2, as described earlier in Sect. 5.1 by Eq. (22), is the space of holomorphic
cusp forms of weight m + 2 for SL2(Z), and for m = 0 we define dim S2 = −1.

For the reader’s convenience, the dimension of the space of cusp forms Sm+2 is
given by

dim S12�+2+i =

⎧
⎪⎪⎨

⎪⎪⎩

� − 1 if i = 0
� if i = 2, 4, 6, 8
� + 1 if i = 10
0 if i is odd

.

5.4 Euler characteristic of GL3(Z)with respect to the highest weight
representations

This subsection is merely an example to reveal the fact that the results obtained for
SL3(Z) can easily be extended to GL3(Z). However, This can also be easily concluded
by using the Lemma 17 which appears later in Sect. 6.

Let T be any torsion element of GL3(Z). Then Hm(−T ) = (−1)m Hm(T ) . There-
fore

Hm(T ) + Hm(−T ) =
⎧
⎨

⎩

2Hm(T ), m ≡ 0(mod 2)

0, m ≡ 1(mod 2)
.

For any T ∈ SL3(Z), CGL3(Z)(T ) = {±I } × CSL3(Z)(T ). This implies that

χorb(CGL3(Z)(T )) = 1

2
χorb(CSL3(Z)(T )).

This gives

χorb(CGL3(Z)(T ))Hm(T ) + χorb(CGL3(Z)(−T ))Hm(−T )

=
⎧
⎨

⎩

χorb(CSL3(Z)(T ))Hm(T ), m ≡ 0(mod 2)

0, m ≡ 1(mod 2)
.

Therefore,

χh(GL3(Z), Symm V ) =
⎧
⎨

⎩

χh(SL3(Z), Symm V ), m ≡ 0(mod 2)

0, m ≡ 1(mod 2)
.

More generally, following the Weyl character formula, for any torsion element
T ∈ GL3(Z), we write

Hm1,m2,m3(−T ) = (−1)m1+2m2+3m3 Hm1,m2,m3(T ) = (−1)m1+m3 Hm1,m2,m3(T ).
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This implies that

χh(GL3(Z),Mm1,m2,m3) =
⎧
⎨

⎩

χh(SL3(Z),Mm1,m2), m1 + m3 ≡ 0(mod 2)

0, m1 + m3 ≡ 1(mod 2)
.

6 Eisenstein cohomology

In this section, by using the information obtained about boundary cohomology and
Euler characteristic of SL3(Z), we discuss theEisenstein cohomologywith coefficients
inMλ. We define the Eisenstein cohomology as the image of the restriction morphism
to the boundary cohomology

r : H•(S,M̃λ) −→ H•(∂S,M̃λ). (25)

In general, one can find the definition of Eisenstein cohomology as a certain subspace
of H•(S,M̃λ) that is a complement of a subspace of the interior cohomology. It
is known that the interior cohomology H•

! (S,M̃λ) is the kernel of the restriction
morphism r . More precisely, we can simply consider the following happy scenario
where the following sequence is exact.

0 −→ H•
! (S,M̃λ) −→ H•(S,M̃λ)

r−→ H•
Eis(S,M̃λ) −→ 0.

To manifest the importance of the ongoing work and the complications involved,
we refer the interested reader to an important article [22] of Lee and Schwermer.

6.1 A summary of boundary cohomology

For further exploration, we summarize the discussion of boundary cohomology of
SL3(Z) carried out in Sect. 4 in the form of following theorem.

Theorem 12 For λ = m1ε1 + m2(ε1 + ε2), the boundary cohomology of the orbifold
S of the arithmetic group SL3(Z) with coefficients in the highest weight representation
Mλ is described as follows.

(1) Case 1 : m1 = m2 = 0 then

Hq(∂S,M̃λ) =
⎧
⎨

⎩

Q for q = 0, 4

0 otherwise
.

123



Boundary and Eisenstein cohomology of SL3(Z) 235

(2) Case 2 : m1 = 0 and m2 �= 0, m2 even

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1
! (SM1 ,M̃e·λ), q = 1

H1
! (SM2 ,M̃s2s1·λ), q = 3

0, otherwise

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sm2+2, q = 1

Sm2+2, q = 3

0, otherwise

.

(3) Case 3 : m1 �= 0, m1 even and m2 = 0

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1
! (SM2 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1s2·λ), q = 3

0, otherwise

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sm1+2, q = 1

Sm1+2, q = 3

0, otherwise

.

(4) Case 4 : m1 �= 0, m1 even and m2 �= 0, m2 even, then

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q ⊕ H1
! (SM1 ,M̃e·λ) ⊕ H1

! (SM2 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1s2·λ) ⊕ H1

! (SM2 ,M̃s2s1·λ) ⊕ Q, q = 3

0, otherwise

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q ⊕ Sm1+2 ⊕ Sm2+2, q = 1

Q ⊕ Sm1+2 ⊕ Sm2+2, q = 3

0, otherwise

.
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(5) Case 5 : m1 �= 0, m1 even and m2 odd, then

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
! (SM2 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ), q = 2

H1
! (SM1 ,M̃s1s2·λ), q = 3

0, otherwise

,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm1+2, q = 1

Sm1+m2+3 ⊕ Sm1+m2+3, q = 2

Sm1+2, q = 3

0, otherwise

.

(6) Case 6 : m1 = 0 and m2 odd, then

Hq(∂S,M̃λ) =
⎧
⎨

⎩

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ) ⊕ Q ⊕ Q, q = 2

0 , otherwise
,

=
⎧
⎨

⎩

Sm1+m2+3 ⊕ Sm1+m2+3 ⊕ Q ⊕ Q, q = 2

0 , otherwise
.

(7) Case 7 : m1 odd and m2 = 0

Hq(∂S,M̃λ) =
⎧
⎨

⎩

H1
! (SM2 ,M̃s2·λ) ⊕ H1

! (SM1 ,M̃s1·λ) ⊕ Q ⊕ Q, q = 2

0 , otherwise
,

=
⎧
⎨

⎩

Sm1+m2+3 ⊕ Sm1+m2+3 ⊕ Q ⊕ Q, q = 2

0 , otherwise
.

(8) Case 8 : m1 odd, m2 �= 0 even, then

Hq(∂S,M̃λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
! (SM1 ,M̃e·λ), q = 1

H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ), q = 2

H1
! (SM2 ,M̃s2s1·λ), q = 3

0, otherwise

,
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm2+2, q = 1

Sm1+m2+3 ⊕ Sm1+m2+3, q = 2

Sm2+2, q = 3

0, otherwise

.

(9) Case 9 : m1 odd and m2 odd, then

Hq(∂S,M̃λ) = 0, ∀q.

Observe that at this point we have explicit formulas to determine the cohomology
of the boundary.

6.2 Poincaré duality

Let M∗
λ denote the dual representation of Mλ. M∗

λ is in fact the irreducible repre-
sentation Mλ∗ associated to the highest weight λ∗ = −w0(λ), where w0 denotes the
longest element in the Weyl group. One has the natural pairings (see [16])

H•(S�,M̃λ) × H5−•
c (S�,M̃λ∗) −→ Q,

and

H•(∂S�,M̃λ) × H4−•(∂S�,M̃λ∗) −→ Q.

These pairings are compatible with the restriction morphism r : H•(S�,M̃λ) −→
H•(∂S�,M̃λ) and the connecting homomorphism δ : H•(∂S�,M̃λ) −→ H•+1

c (S�,

M̃λ) of the long exact sequence in cohomology associated to the pair (S, ∂S), in the
sense that the pairings are compatible with the diagram:

H•(S�,M̃λ)

r

× H5−•
c (S�,M̃λ∗)

δ

Q

H•(∂S�,M̃λ) × H4−•(∂S�,M̃λ∗) Q

H•
Eis(S�,M̃λ) is the image of the restriction morphism r and therefore, as an

implication of the aforementionned compatibility between the pairings, the spaces
H•

Eis(S�,M̃λ) are maximal isotropic subspaces of the boundary cohomology under
the Poincaré duality. This means that H•

Eis(S�,M̃λ∗) is the orthogonal space of
H•

Eis(S�,M̃λ) under this duality.
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In particular, one has

dimH•
Eis(S�,M̃λ) + dimH•

Eis(S�,M̃λ∗)

= 1

2

(
dimH•(∂S�,M̃λ) + dimH•(∂S�,M̃λ∗)

)
. (26)

6.3 Euler characteristic for boundary and Eisenstein cohomology

In the next few lineswe establish a relation between the homological Euler characteris-
tics of the arithmetic group and the Euler Characteristic of the Eisenstein cohomology
of the arithmetic group, and similarly another relation with the Euler characteris-
tic of the cohomology of the boundary. During this section we will be frequently
using the notations H•

Eis(SL3(Z),Mλ) for H•
Eis(S�,M̃λ) and H•

! (SL3(Z),Mλ) for
H•

! (S�,M̃λ) to make it very explicit the arithmetic group we are working with. See
Sect. 5, for the definition of homological Euler characteristic of SL3(Z). Note that we
can define the “naive” Euler characteristic of the underlying geometric object as the
alternating sum of the dimension of its various cohomology spaces. Following this,
we define

χ(H•
Eis(SL3(Z),Mλ)) =

∑

i

(−1)i dim H•
Eis(SL3(Z),Mλ)

and

χ(H•(∂S,M̃λ)) =
∑

i

(−1)i dim H•(∂S,M̃λ).

The following two statements (Corollary 13 and Lemma 14) are synthesized in
Theorem15,which is needed for computing theEisenstein cohomology of SL3(Z) (see
Theorem 16). As a consequence of Theorem 12, we obtain the following immediate

Corollary 13

χ(H•(∂S,M̃λ)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2(1 + dim Sm1+2 + dim Sm2+2), m1, m2 both even

2(dim Sm1+m2+3 − dim Sm1+2), m1 even, m2 odd

2(dim Sm1+m2+3 − dim Sm2+2), m1 odd, m2 even

0, m1, m2 both odd

,

where we are denoting dimS2 = −1.

As discussed in the previous paragraph, we now state and prove a simple relation
between Euler characteristic of the Eisenstein cohomology and the homological Euler
characteristic.
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Lemma 14

χ(H•
Eis(SL3(Z),Mλ)) = χh(SL3(Z),Mλ)

Proof Let us denote by hi , hi
Eis and hi

! the dimension of the spaces Hi (SL3(Z),Mλ),
Hi

Eis(SL3(Z),Mλ) and Hi
! (SL3(Z),Mλ), respectively. By definition, we have

χh(SL3(Z),Mλ) =
3∑

i=0

(−1)i hi .

Assume λ �= 0. Then h0 = 0. Following Bass-Milnor-Serre, Corollary 16.4 in [2], we
know that h1 = 0.

On the other hand, let Mλ∗ be the dual representation of Mλ. In our case, if
λ = (m1 + m2)ε1 + m2ε2, then λ∗ = (m1 + m2)ε1 + m1ε2. One has by Poincaré
duality that Hq

! (SL3(Z),Mλ) is dual to H5−q
! (SL3(Z),Mλ∗). Moreover, if λ �= λ∗

then H•
! (SL3(Z),Mλ) = 0 (see for example Lemma 3.2 of [15]). Therefore one has,

in all the cases, h2
! = h3

! . Using that, we obtain

χh(SL3(Z),Mλ) = h2 − h3

= h2
Eis + h2

! − h3
Eis − h3

!
= h2

Eis − h3
Eis

= χ(H•
Eis(SL3(Z),Mλ)).

��
We now state the following key result.

Theorem 15

χ(H•
Eis(SL3(Z),Mλ)) = 1

2
χ(H•(∂S,M̃λ)).

Proof Using Corollary 13 and Tables 8 and 9, we find that

χ(H•(∂S,M̃λ)) = 2χh(SL3(Z),Mλ)).

Using Lemma 14, we have

2χh(SL3(Z),Mλ)) = 2χ(H•
Eis(SL3(Z),Mλ)).

Therefore,

χ(H•(∂S,M̃λ)) = 2χ(H•
Eis(SL3(Z),Mλ)).

��
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6.4 Main theorem on Eisenstein cohomology for SL3(Z)

The following is themain result of the paper, that gives both the dimension of theEisen-
stein cohomology together with its sources—the corresponding parabolic subgroups.
It is stated using different cases that cover all possible highest weight representations.
A central part of the proof is based on Theorems 12 and 15.

Theorem 16 (1) Case 1 : m1 = m2 = 0 then

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Q for q = 0

0 otherwise
.

(2) Case 2 : m1 = 0 and m2 �= 0, m2 even

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Sm2+2, q = 3

0, otherwise
.

(3) Case 3 : m1 �= 0, m1 even and m2 = 0

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Sm1+2, q = 3

0, otherwise
.

(4) Case 4 : m1 �= 0, m1 even and m2 �= 0, m2 even, then

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Q ⊕ Sm1+2 ⊕ Sm2+2, q = 3

0, otherwise
.

(5) Case 5 : m1 �= 0, m1 even and m2 odd, then

Hq
Eis(SL3(Z),Mλ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sm1+m2+3, q = 2

Sm1+2, q = 3

0, otherwise

.

(6) Case 6 : m1 = 0 and m2 odd, then

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Sm2+3 ⊕ Q, q = 2

0 , otherwise
,
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(7) Case 7 : m1 odd and m2 = 0

Hq
Eis(SL3(Z),Mλ) =

⎧
⎨

⎩

Sm1+3 ⊕ Q, q = 2

0 , otherwise
.

(8) Case 8 : m1 odd and m2 �= 0, m2 even, then

Hq
Eis(SL3(Z),Mλ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sm1+m2+3, q = 2

Sm2+2, q = 3

0, otherwise

,

(9) Case 9 : m1 odd and m2 odd, then

Hq
Eis(SL3(Z),Mλ) = 0, ∀q.

Proof Let

hi = dim Hi (SL3(Z),M˘),

hi
! = dim Hi

! (SL3(Z),M˘),

and

hi
Eis := hi

Eis(M̃λ) = dim Hi
Eis(SL3(Z),M˘),

hi
∂ := hi

∂ (M̃λ) = dim Hi (∂S,M̃λ).

For any nontrivial highest weight representation we have h0 = 0, since any proper
SL3(Z)-invariant subrepresentation ofMλ is trivial. Also, h1 = 0, fromBass-Milnor-
Serre [2], Corollary 16.4. Therefore, h0

Eis = h1
Eis = 0. Following [28] and [4], we

know that the cohomological dimension of SL3(Z) is 3. Moreover, h2
! = h3

! since the
corresponding cohomology groups are dual to each other. Therefore,

χh(SL3(Z),Mλ) = h2 − h3 = h2
Eis − h3

Eis . (27)

Cases 2, 3 and 4 We have that h2
∂ = 0. Therefore, h2

Eis = 0. From Eq. (27) and
Theorem 15, we obtain h3

Eis = −χh(SL3(Z),Mλ) = − 1
2χ(H•(∂S,M̃λ)). Using

Theorem 11, we conclude the formulas for case 2 and case 3 of Theorem 15.
Cases 6 and 7 We have that h3

∂ = 0. Therefore, h3
Eis = 0. From Eq. (27) and Theo-

rem15,weobtainh2
Eis = χh(SL3(Z),Mλ) = 1

2χ(H•(∂S,M̃λ)).UsingTheorem12,
we conclude the formulas for case 6 and case 7 of Theorem 16.
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Cases 5 and 8 The two cases are dual to each other. Thus it is enough to consider only
case 5. From Poincaré duality (26), we have

∑

i

(
hi

Eis(M̃λ) + hi
Eis(M̃λ∗)

)
= 1

2

∑

i

(
hi

∂ (M̃λ) + hi
∂ (M̃λ∗)

)
(28)

From Theorem 15, we have

∑

i

(−1)i
(

hi
Eis(M̃λ) + hi

Eis(M̃λ∗)
)

= 1

2

∑

i

(−1)i
(

hi
∂ (M̃λ) + hi

∂ (M̃λ∗)
)

(29)

Adding Eqs. (28) and (29), we obtain

h2
Eis(M̃λ) + h2

Eis(M̃λ∗) = 1

2

(
h2

∂ (M̃λ) + h2
∂ (M̃λ∗)

)
.

Subtracting Eqs. (28) and (29), we obtain

h3
Eis(M̃λ) + h3

Eis(M̃λ∗) = 1

2

(
h3

∂ (M̃λ) + h3
∂ (M̃λ∗)

)
+ 1

2

(
h1

∂ (M̃λ) + h1
∂ (M̃λ∗)

)
.

(30)
Also,Mλ is a regular representation. Therefore,

H3
Eis(SL3(Z),Mλ) ⊂ H3(∂S,M̃λ) = Sm1+2,

and

H3
Eis(SL3(Z),Mλ∗) ⊂ H3(∂S,M̃λ∗) = Sm2+2.

Form, Eq. (30), we have

h3
Eis(M̃λ) + h3

Eis(M̃λ∗) = dim Sm1+2 + dim Sm2+2.

Therefore, the above inclusions are equalities, i.e.

H3
Eis(SL3(Z),Mλ) = Sm1+2, H3

Eis(SL3(Z),Mλ∗) = Sm2+2.

Then
h2

Eis(M̃λ) = χh(SL3(Z),Mλ) + h3
Eis(M̃λ) = dim Sm1+m2+3. (31)

Since H2
Eis(SL3(Z),Mλ) ⊂ H2(∂S,M̃λ), therefore from Theorem 12 and

Eq. (31), we conclude that

H2
Eis(SL3(Z),Mλ) = Sm1+m2+3.

��
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Note that in case of GL3(Z), its highest weight representation Mλ is defined for
highestweightλ = m1γ1+m2γ2+m3γ3 with γ1 = ε1, γ2 = ε1+ε2, γ3 = ε1+ε2+ε3.
In this case the cohomology groups Hq(GL(3, Z),M˘) can be described explicitly
which we state in the following lemma.

Lemma 17 Let Mλ be the highest weight representation of GL3(Z) with λ = m1γ1 +
m2γ2 + m3γ3, then

Hq (GL3(Z),Mλ)

=
⎧
⎨

⎩

0, m1 + 2m2 + 3m3 ≡ 1(mod 2)

H0(Gm (Z), Hq (SL3(Z),Mν)) = Hq (SL3(Z),Mν), m1 + 2m2 + 3m3 ≡ 0(mod 2)
.

whereMν = Mλ|SL3 , i.e. ν is the highest weight of SL3 given by ν = (m1+m2)ε1+
m2ε2.

Note that the first equality is by Hochschild-Serre spectral sequence and the second
one follows from the parity condition. Here Gm(Z) = {−1, 1}. We may conclude the
above discussion simply in the following corollary.

Corollary 18 Let � be either GL3(Z) or SL3(Z), and Mλ be any highest weight
representation of �. The following are true.

(1) If Mλ is not self dual then

Hq(�,Mλ) = Hq
Eis(�,Mλ).

(2) If Mλ is self dual then we have

Hq(�,Mλ) = Hq
Eis(�,Mλ) ⊕ Hq

! (�,Mλ),

where H2
! (�,Mλ) and H3

! (�,Mλ) are dual to each other, and H0
! (�,Mλ) =

H1
! (�,Mλ) = 0.

Remark 19 InTheorem16 and hence inCorollary 18,we obtain exactly the dimensions
of the group cohomlogy Hi (GL3(Z),Mλ) and Hi (SL3(Z),Mλ), when the highest
weight representation Mλ is not self dual. For self dual representations, the result
gives lower bounds for the dimensions because the discrepancy between the total
cohomology and the Eisenstein cohomology is the inner cohomology (which over
C contains the cuspidal cohomology) that is nonzero only in degrees 2 and 3. Even
more, because of Poincaré duality, the inner cohomology in degree 2 is dual to the
inner cohomology in degree 3.

7 Ghost classes

Following the discussion in Sect. 2, we have

. . . → Hq
c (S,M̃λ) −→ Hq(S,M̃λ)

rq−→ Hq(∂S,M̃λ) −→ . . .
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and the covering ∂S = ∪P∈PQ(G)∂P, which induces a spectral sequence in cohomology

connecting to H•(∂S,M̃λ), leads to another long exact sequence in cohomology

. . . −→ Hq(∂S,M̃λ)
pq

−→ Hq(∂1,M̃λ) ⊕ Hq(∂2,M̃λ) −→ Hq(∂0,M̃λ) −→ . . .

(32)
We now define the space of q-ghost classes by

Ghq(M̃λ) = I m(rq) ∩ K er(pq).

We will see that for almost every q and λ, Ghq(M̃λ) = {0}. For pedagogical
reasons, we now provide the details for all the nine cases. To begin with let us define
the maps

sq : Hq−1(∂0,M̃λ) −→ Hq(∂S,M̃λ)

and for i = 1, 2

rq
i : Hq(∂i ,M̃λ) −→ Hq(∂0,M̃λ).

Note that Hq(S,M̃λ) = 0 for q = 1 and q ≥ 4. Following this in all the cases, we
obtain I m(rq) = {0} for q = 1 and q ≥ 4. Also, in every case, K er(p0) = I m(s0) =
{0}. Therefore, it is easy to see that in all the cases we get the following conclusion.

Lemma 20 For any highest weight λ, Ghq(M̃λ) = {0} for q = 0, 1 and q ≥ 4.

Now, what remains to discuss is the space Ghq(M̃λ) for q = 2, 3. Following the
above discussion, we observe that in case 1 and case 9, Ghq(M̃λ) = {0},∀q. Since
from Theorem 12, Hq(∂S,M̃λ) = 0, ∀q in case 9 and for q = 1, 2, 3 in case 1.

Note that case 2 and case 3, are dual to each other. We know that H2(∂S,M̃λ) = 0
therefore K er(p2) = {0}. This gives us Gh2(M̃λ) = {0}. For q = 3 we have

Gh3(M̃λ) = I m(r3) ∩ I m(s3),

where s3 : H2(∂0,M̃λ) −→ H3(∂S,M̃λ), and following (14) we see that I m(s3) =
{0} since H2(∂0,M̃λ) = 0. In other words, in case 2, there are no second degree
cohomology classes of P0 and this implies that the domain of s3 is zero. Hence, the
image is so. We conclude this in the form of following lemma.

Lemma 21 In case 2 and case 3, i.e. for λ = m2γ2 and λ = m1γ1, respectively, with
m1, m2 non zero even integers, Ghq(M̃λ) = {0}, ∀q.

Let us discuss now the case 6 and case 7. FollowingTheorem12, H3(∂S,M̃λ) = 0 and
therefore Gh3(M̃λ) = {0}. By the definition of ghost classes, we have Gh2(M̃λ) =
I m(r2) ∩ I m(s2) where s2 : H1(∂0,M̃λ) −→ H2(∂S,M̃λ), i.e.

s2 : H0(SM0 ,M̃s1·λ)⊕H0(SM0 ,M̃s2·λ) −→ H1! (SM1 ,M̃s1·λ)⊕H1! (SM2 ,M̃s2·λ)⊕Q⊕Q.
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However, H0(SM0 ,M̃s2·λ) = 0 and dim H0(SM0 ,M̃s1·λ) = 1. Therefore, in case 6
and case 7, either dim Gh2(M̃λ) = 0 or 1.

Lemma 22 In case 6 and case 7, i.e. for λ = m2γ2 and γ = m1γ1, respectively, with
m1 and m2 any odd integer, Ghq(M̃λ) = {0}, ∀q, except possibly for q = 2.

Consider now the case 5 and case 8. In case 5, Gh2(M̃λ) = {0} since K er(p2) = {0}.
This simply follows by studying I m(s2) where s2 is defined by

s2 : H0(SM0 ,M̃s1·λ) −→ H1
! (SM1 ,M̃s1·λ) ⊕ H1

! (SM2 ,M̃s2·λ),

and K er(s2) is the image of the morphism

H1(∂1,M̃λ) ⊕ H1(∂2,M̃λ) −→ H1(∂0,M̃λ)

from the exact sequence (32). From the calculations in Sect. 4 we get I m(s2) = 0.
Similarly, we have

s3 : H0(SM0 ,M̃s1s2·λ) ⊕ H0(SM0 ,M̃s2s1·λ) −→ H1
! (SM1 ,M̃s1s2·λ) ∼= Sm2+2.

and again by same reasoning, we see that s3 vanishes. Therefore Gh3(M̃λ) = {0}.
Case 8 is analogous and we simply conclude the following.

Lemma 23 In case 5 and case 8, i.e. for λ = m1γ1 + m2γ2 with m1 and m2 nonzero
and having different parity modulo 2, Ghq(M̃λ) = {0}, ∀q.

The only case that remains to discuss is case 4. Following Lemma 20, the only cases
which need to be discussed are q = 2 and q = 3. However, following case 4 of Theo-
rem 12, we know that H2(∂S,M̃λ) = 0, therefore Gh2(M̃λ) = {0}. Gh3(M̃λ) = 0
because H2(∂0,M̃λ) = 0. Hence, we can simply summarize this in the form of
following lemma.

Lemma 24 In case 4, i.e. for λ = m1γ1 + m2γ2 with m1, m2 both non zero even
integers, Ghq(M̃λ) = {0}, ∀q.

Remark 25 We can summarize the whole discussion of this section in the following
lines to give the reader an intuitive idea of how to get to the punchline. The kernel of pq

is isomorphic to the image of sq and the image of rq is the Eisenstein cohomology of
degree q. Thus the ghost classes are classes in the Eisenstein cohomology that are also
in the image of the connecting homomorphism sq . Since the Eisenstein cohomology
is concentrated in degrees 2 and 3, see Theorem 16, we have that any ghost class of
SL3(Z) must come from the image of H1(∂0,M̃λ) or H2(∂0,M̃λ) in H2(∂S,M̃λ)

or H3(∂S,M̃λ), respectively. Examining all the nine cases of boundary cohomology
(see Theorem 12), we see that there is no contribution from the minimal parabolic
subgroup P0 to the boundary cohomology of degree 2 or 3, except in the cases 6 and 7.
Thus, there are no ghost classes in SL3(Z) and similarly in GL3(Z), except possibly
in the cases 6 and 7.
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Hence, we summarize the discussion in the following theorem.

Theorem 26 There are no nontrivial ghost classes in SL3(Z) and GL3(Z), except in
the cases 6 and 7. In those cases, non-zero ghost classes might occur only in degree
2, where we have Gh2(M̃λ) = 0 or Q.
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